Difference between revisions of "Functional C++"
Line 11: | Line 11: | ||
Values vs. Identities | Values vs. Identities | ||
+ | |||
+ | Passing arguments by value: | ||
+ | <syntaxhighlight lang="cpp"> | ||
+ | #include <iostream> | ||
+ | |||
+ | using namespace std; | ||
+ | |||
+ | void f2(int y) { | ||
+ | y++; | ||
+ | cout << y << endl; | ||
+ | } | ||
+ | |||
+ | void f1() { | ||
+ | int x; | ||
+ | x = 1; | ||
+ | |||
+ | f2(x); | ||
+ | |||
+ | cout << x << endl; | ||
+ | } | ||
+ | |||
+ | int main() { | ||
+ | f1(); | ||
+ | } | ||
+ | </syntaxhighlight> | ||
+ | |||
+ | <pre> | ||
+ | 2 | ||
+ | 1 | ||
+ | </pre> | ||
+ | |||
+ | Passing arguments by reference (identities): | ||
+ | <syntaxhighlight lang="cpp"> | ||
+ | #include <iostream> | ||
+ | |||
+ | using namespace std; | ||
+ | |||
+ | void f2(int& y) { | ||
+ | y++; | ||
+ | cout << y << endl; | ||
+ | } | ||
+ | |||
+ | void f1() { | ||
+ | int x; | ||
+ | x = 1; | ||
+ | |||
+ | f2(x); | ||
+ | |||
+ | cout << x << endl; | ||
+ | } | ||
+ | |||
+ | int main() { | ||
+ | f1(); | ||
+ | } | ||
+ | </syntaxhighlight> | ||
+ | |||
+ | <pre> | ||
+ | 2 | ||
+ | 2 | ||
+ | </pre> | ||
--- | --- |
Revision as of 09:52, 13 January 2015
C++ is a multiparadigm, many level of abstracions, and very little overhead - runtime cost.
Usually procedural, object-oriented, but functional style is also possible. Not strictly functional, but possible to use problem solving schemas and basic bulding blocks (working with values as opposed to identities)
C++ 11 standard expands this support with lambdas
immutable data structures that maintains the speed C++ is known for while providing the protection that functional languages
---
Values vs. Identities
Passing arguments by value:
#include <iostream>
using namespace std;
void f2(int y) {
y++;
cout << y << endl;
}
void f1() {
int x;
x = 1;
f2(x);
cout << x << endl;
}
int main() {
f1();
}
2 1
Passing arguments by reference (identities):
#include <iostream>
using namespace std;
void f2(int& y) {
y++;
cout << y << endl;
}
void f1() {
int x;
x = 1;
f2(x);
cout << x << endl;
}
int main() {
f1();
}
2 2
---
Lambda (value vs reference)
---
---
Function Equivalence | |
---|---|
Haskell | C++ |
map | for_each |
foldl | accumulate |
foldr | accumulate |
filter | copy_if |
replicate | fill_n |
Contents
map
template<class InputIterator, class Function>
Function for_each(InputIterator first, InputIterator last, Function fn)
{
while (first!=last) {
fn (*first);
++first;
}
return move(fn);
}
template <class InputIterator, class OutputIterator, class UnaryOperator>
OutputIterator transform (InputIterator first1, InputIterator last1,
OutputIterator result, UnaryOperator op)
{
while (first1 != last1) {
*result = op(*first1); // or: *result=binary_op(*first1,*first2++);
++result; ++first1;
}
return result;
}
foldl
template <class InputIterator, class T>
T accumulate (InputIterator first, InputIterator last, T init)
{
while (first!=last) {
init = init + *first; // or: init=binary_op(init,*first) for the binary_op version
++first;
}
return init;
}
foldr
user rbegin and rend
template <class InputIterator, class T>
T accumulate (InputIterator first, InputIterator last, T init)
{
while (first!=last) {
init = init + *first; // or: init=binary_op(init,*first) for the binary_op version
++first;
}
return init;
}
filter
template <class InputIterator, class OutputIterator, class UnaryPredicate>
OutputIterator copy_if (InputIterator first, InputIterator last,
OutputIterator result, UnaryPredicate pred)
{
while (first!=last) {
if (pred(*first)) {
*result = *first;
++result;
}
++first;
}
return result;
}
replicate
template <class OutputIterator, class Size, class T>
OutputIterator fill_n (OutputIterator first, Size n, const T& val)
{
while (n>0) {
*first = val;
++first; --n;
}
return first;
}
template <class ForwardIterator, class T>
void fill (ForwardIterator first, ForwardIterator last, const T& val)
{
while (first != last) {
*first = val;
++first;
}
}